Content

Tutorial 11
---Chan Ki Fung

BACK

Questions of today

1. a. Let γ be a positively oriented Jordan curve (simpe closed curve), and Ω be the region enclosed by γ , show that

b. (Area theorem) Suppose f is holomorphic and injective on $\mathbb{D}\setminus\{0\}$ and has the power series representation

then show that

- . Then take $g(z) = zh(z^2)$. To show $g'(0) = 1$, find the first few terms of its power series expansion. To argue g is inective, suppose $g(z) = g(w)$, use the injectivity of f to show that $z^2 = w^2$. If $z = -w$, use $g(z) = zh(z^2)$ to get $z=0$.
- b. To show $|a_2| \leq 2$, we use part (a) to find g with $g^(z) = f(z^2)$. Show that we have Laurent series expansion:

Hence $|a_2+\frac{1}{w}|\leq 2$ if we applied what we have proved for f to h . Hence $\frac{1}{|w|}\leq 4.$ c. Consider

Hints & solutions of today

1. a. Apply the Green' theorem (writing $\overline{z} = x - iy, dz = da + idy$).

b. Show that

3. The "if" direction is easy. For the only if direction, we can consider the case $r_1=r_2=1$, so we need to show that if $A(1,R_1)$ and $A(1,R_2)$ are conformally equivalent, then $R_1=R_2.$ We divide the hints into several steps.

 $\textsf{Step 1:}\textsf{Suppose}\;f: A(1,R_1)\rightarrow A(1,R_2)$ is a conformal equivalence. For $1 < r < R_1,$ let C_r be the

Step 4: From step 3, we see that $f/f' = t/z$, show that t is an integer using argument principle, and show that it is positive.

Step 5: From step 4, we have $f = cz^t$. Show that $|c| = t = 1$.

then apply problem 1(b).

To show the second part, suppose w is not in the image, and put

circle of radius r centered at the origin. Show that there exists some small positive ϵ such that $f(A(1, 1 + \epsilon)) \cap f(C_r) = \emptyset$. Replace f with R_2/f if necessary, we may assume $f(A(1, 1 + \epsilon)) \subset A(1, r).$ Step 2: Taking $r\to 1$, we see that $|f(z)|\to 1$ as $|z|\to 1$. In the same manner, show that $|f(z)|\to R_2$ as $|z|\to R_1$. Step 3: Consider the function ¯*zdz* ¯*z* = *x* − *iy*, *dz* = *da* + *idy*

 $u(z) = \log|f(z)| - t \log|z|,$

where t is a real number. Note that u is harmonic, show that for some suitable t , u becomes 0 on the boundary of $A(1,R_1)$, and thus u is identically zero by the harmonicity.

$$
\text{Area}(\Omega)=\frac{1}{2i}\int_{\gamma}\overline{z}d
$$

$$
f(z)=\frac{1}{z}+\sum_{n=0}^{\infty}a_{n}z^{n},
$$

$$
\sum_{n=0}^\infty n|a_n|^2\leq 1.
$$

- In particular, we must have $|a_1|\leq 1.$
- 2. $\;\;$ a. Suppose f is holomorphic and injective on ${\mathbb D}$ with

$$
f(0)=0, f^{\prime}(0)=1.
$$

Show that there exists a function g which holomorphic and injective on ${\mathbb D}$ with

$$
g(0)=0, g^\prime(0)=1.
$$

and such that $g^2(z) = f(z^2)$.

b. Suppose f is holomorphic and injective on ${\mathbb D}$ and

$$
f(z)=z+\sum_{n=2}^{\infty}a_{n}z^{n},
$$

show that $|a_2|\leq 2$ and $f(\mathbb{D})\supset D(0,\frac{1}{4})$.

 $c.$ Suppose F is holomorphic and injective on $\mathbb{D}\setminus\{0\},$ and F has a pole of order 1 at $z=0,$ with residue $1.$ Show that if $w_1, w_2 \not\in F(\mathbb{D})$, then $|w_1 - w_2| \leq 4.$

3. For $0 \leq r < R \leq \infty$, let $A(r,R)$ be the annulus $\{z \in \mathbb{C} : r < |z| < R\}$. Show that $A(r_1,R_1)$ and $A(r_{2}, R_{2})$ are conformally equivalent if and only if $R_{2}/R_{1}=r_{2}/r_{1}.$

$$
\frac{1}{r^2}\leq \sum_{n=0}^\infty n|a_n|r^{2n}
$$

by applying (a) to the curve $f(C_r)$, where C_r is a circle centered at the origin of radius r . Then take $r \rightarrow 1$.

2. a. Show that $f(z) = z\phi(z)$ with ϕ nowhere vanishing, choose holomorphic h such that $h^2(z) = \phi(z)$

$$
\frac{1}{g(z)}=\frac{1}{z}-\frac{a_2}{2}z+\cdots,
$$

$$
h(z)=\frac{wf(z)}{w-f(z)}.
$$

Show that h is holomorphic and injective and so that

$$
h(z)=z+(a_2+\frac{1}{w})z^2+\cdots.
$$

$$
f(z)=\frac{1}{F(z)-w_1},
$$

Show that f satisfies the assumption of part (b). Thus we must have

$$
\frac{1}{|w_2-w_1|} \geq \frac{1}{4}.
$$