Content

Tutorial 11 ---Chan Ki Fung

BACK

Questions of today

a. Let γ be a positively oriented Jordan curve (simple closed curve), and Ω be the region enclosed by 1. γ , show that

$${
m Area}(\Omega) = rac{1}{2i}\int_{\gamma}\overline{z}dz$$

b. (Area theorem) Suppose f is holomorphic and injective on $\mathbb{D}\setminus\{0\}$ and has the power series representation

$$f(z)=rac{1}{z}+\sum_{n=0}^{\infty}a_nz^n,$$

then show that

$$\sum_{n=0}^\infty n |a_n|^2 \leq 1.$$

- In particular, we must have $|a_1| \leq 1$.
- a. Suppose f is holomorphic and injective on $\mathbb D$ with 2.

$$f(0) = 0, f'(0) = 1$$

Show that there exists a function g which holomorphic and injective on $\mathbb D$ with

$$g(0) = 0, g'(0) = 1.$$

and such that $g^2(z) = f(z^2)$.

b. Suppose f is holomorphic and injective on $\mathbb D$ and

$$f(z)=z+\sum_{n=2}^{\infty}a_nz^n,$$

show that $|a_2| \leq 2$ and $f(\mathbb{D}) \supset D(0, rac{1}{4}).$

c. Suppose F is holomorphic and injective on $\mathbb{D}\setminus\{0\}$, and F has a pole of order 1 at z=0, with residue 1. Show that if $w_1, w_2
ot\in F(\mathbb{D})$, then $|w_1 - w_2| \leq 4$.

3. For $0 \leq r < R \leq \infty$, let A(r,R) be the annulus $\{z \in \mathbb{C}: r < |z| < R\}$. Show that $A(r_1,R_1)$ and $A(r_2,R_2)$ are conformally equivalent if and only if $R_2/R_1=r_2/r_1.$

Hints & solutions of today

a. Apply the Green' theorem (writing $\overline{z} = x - iy, dz = da + idy$). 1.

b. Show that

$$rac{1}{r^2} \leq \sum_{n=0}^\infty n |a_n| r^{2n}$$
 .

by applying (a) to the curve $f(C_r)$, where C_r is a circle centered at the origin of radius r. Then take r
ightarrow 1.

a. Show that $f(z) = z\phi(z)$ with ϕ nowhere vanishing, choose holomorphic h such that $h^2(z) = \phi(z)$ 2.

- . Then take $g(z) = zh(z^2)$. To show g'(0) = 1, find the first few terms of its power series expansion. To argue g is inective, suppose g(z) = g(w), use the injectivity of f to show that $z^2 = w^2$. If z = -w, use $g(z)=zh(z^2)$ to get z=0.
- b. To show $|a_2| \leq 2$, we use part (a) to find g with $g(z) = f(z^2)$. Show that we have Laurent series expansion:

$$rac{1}{g(z)}=rac{1}{z}-rac{a_2}{2}z+\cdots,$$

then apply problem 1(b).

To show the second part, suppose w is not in the image, and put

$$h(z)=rac{wf(z)}{w-f(z)}.$$

Show that h is holomorphic and injective and so that

$$h(z)=z+(a_2+rac{1}{w})z^2+\cdots.$$

Hence $|a_2 + rac{1}{w}| \leq 2$ if we applied what we have proved for f to h. Hence $rac{1}{|w|} \leq 4$. c. Consider

$$f(z)=rac{1}{F(z)-w_1},$$

Show that f satisfies the assumption of part (b). Thus we must have

$$rac{1}{|w_2-w_1|} \geq rac{1}{4}.$$

3. The "if" direction is easy. For the only if direction, we can consider the case $r_1 = r_2 = 1$, so we need to show that if $A(1, R_1)$ and $A(1, R_2)$ are conformally equivalent, then $R_1 = R_2$. We divide the hints into several steps.

Step 1: Suppose $f: A(1,R_1) o A(1,R_2)$ is a conformal equivalence. For $1 < r < R_1$, let C_r be the

circle of radius r centered at the origin. Show that there exists some small positive ϵ such that $f(A(1,1+\epsilon))\cap f(C_r)=\emptyset$. Replace f with R_2/f if necessary, we may assume $f(A(1,1+\epsilon))\subset A(1,r).$ Step 2: Taking r o 1, we see that |f(z)| o 1 as |z| o 1. In the same manner, show that $|f(z)| o R_2$ as $|z|
ightarrow R_1$. Step 3: Consider the function

 $u(z) = \log |f(z)| - t \log |z|,$

where t is a real number. Note that u is harmonic, show that for some suitable t, u becomes 0 on the boundary of $A(1, R_1)$, and thus u is identically zero by the harmonicity.

Step 4: From step 3, we see that f/f' = t/z, show that t is an integer using argument principle, and show that it is positive.

Step 5: From step 4, we have $f = cz^t$. Show that |c| = t = 1.